
Declarative Implementations of Search Strategies for Solving CSPs in
Control Network Programming

EMILIA GOLEMANOVA

Department of Computer Systems and Technologies
Ruse University

8 Studentska Street, Ruse
BULGARIA

EGolemanova@ecs.uni-ruse.bg

Abstract: - The paper describes one of the most researched techniques in solving Constraint Satisfaction
Problems (CSPs) - searching which is well-suited for declarative (non-procedural) implementation in a new
programming paradigm named Control Network Programming, and how this can be achieved using the tools
for dynamic computation control. Some heuristics for variable and value ordering in backtracking algorithm,
lookahead strategies, stochastic strategies and local search strategies are subjects of interest. The 8-queens
problem is used to help in illustrating how these algorithms work, and how they can be implemented in Control
Network Programming.

Key-Words: - Control Network Programming; graphical programming; declarative programming; Constraint
Satisfaction Problem; MRV, degree, LCV and minimum-conflicts heuristics.

1 Introduction
Control Network Programming (CNP) is a
relatively new programming paradigm developed by
a team in which the author is involved in and is
especially effective for solving problems with
natural graph-like representation. There are two
major CNP implementation techniques. In the first
approach, the classical algorithms are essentially
simulated in CNP – we refer to such
implementations as procedural implementations.
The other approach makes use of the built-in in
CNP search mechanism which is an extended
version of backtracking and the CN program has a
descriptive not an algorithmic character. These are
non-procedural or declarative implementations.
The resulting programs are easier to read, modify,
and extend, which is important in AI, where
efficient algorithms are, in general, difficult to
implement and require considerable
experimentation.

In addition to the built-in search mechanism,
CNP and more specifically, the SPIDER language
supports powerful means for its dynamic control [1].
They turn out to be very a convenient tool for
realization of various heuristic strategies in Problem
Solving [2, 3, 4]. This paper expands the application
area of these tools describing their usage for solving
Constraint Satisfaction Problems (CSPs). On
another point of view (the CSPs researcher’s view),
the aim of this work is to promote a new
programming paradigm - CNP, as a convenient tool

for illustration of the basic techniques in constraint
satisfaction. The question of how to easily model
various types of heuristics in a declarative way is
addressed. The result is non-procedural
implementations which are “natural”, i.e. similar to
the manner in which people think of and specify
problems. Being so intuitive, these implementations
and respectively WinSpider IDE (which is the last
CNP IDE), can be used as an excellent approach for
teaching and learning search in constraint
satisfaction.

The 8-queens problem will be used as the
illustrative example in this paper. Finding all
solutions to the 8-queens puzzle is a good example
of a simple but nontrivial problem. For this reason,
it is often used as an example problem for various
programming techniques, including nontraditional
approaches such as constraint programming [5],
logic programming or genetic algorithms. But, while
the n-queens problem is a wonderful problem to
study backtracking systems and is intensively used
in benchmarks to test these systems, there are real
problems that can be modeled and solved as n-
queens problems. For instance, it has been used for
parallel memory storage schemes, VLSI testing,
traffic control and deadlock prevention [6].

2 CNP
Programming through control networks, or
Control Network Programming, or just CNP, is a

WSEAS TRANSACTIONS on COMPUTERS Emilia Golemanova

E-ISSN: 2224-2872 174 Issue 4, Volume 12, April 2013

style of high-level programming that has been
inspired by the idea to create a convenient and
effective way for solving problems that can be
naturally visualized using graphs. In CNP, what
corresponds to a program in a conventional
programming language is a description of the
problem in the form of a graph, called Control
Network (CN). The CN is a finite set of subnets,
one of which is the main subnet. The subnets can
call each other, potentially recursively. Each subnet
consists of labeled nodes (also routinely called
states), and arrows between nodes. A chain of
primitives is assigned to each arrow. The primitives
are elementary actions, and if a parallel is to be
drawn with the traditional languages, they
correspond to user-defined functions in some
imperative language. The complete program
consists of two main components - the CN and the
definitions of the primitives. The CN may actually
be nondeterministic. The system “executes” the CN
by implementing a backtracking-like search strategy
for traversing the CN. Similarly to Prolog and other
declarative languages, SPIDER provides means for
static and dynamic control of the search process.
Two groups of tools for dynamic search control
(which is a subject of interest here) are available:
system options and control states.

For more details on the structure and syntax of a
CN program the reader is referred to [7], as well as
to the web site [8] especially devoted to CNP.
Representative examples of using CNP for solving
various types of problems have been considered in
[9]. CN programs and their behavior were more
formally defined in [10], and the basics of their
execution introduced.

3 8-Queens problem as a Constraint
Satisfaction Problem
At first, we need to model the 8-queens problem as
a CSP problem. To formalize a problem as a CSP,
we must identify a set of variables, a set of domains
and a set of constraints [11, 12, 16, 19]. For the 8
queens problem let :

• variables {Q1, Q2, …, Q8} represent
the queens,
• domains Qi∈{1, 2, …, 8}, ∀i∈{1, 2, …, 8},

where equality Qi=j determines the i-th queen is
placed on the i-th row and j-th column (note, that
each queen strictly determines the row where it is
placed),

• constraints
Qi ≠Qj, ∀i, j∈{1, 2, …, 8}, i≠j condition
for columns,

|Qi-Qj|≠|i-j|, ∀i, j∈{1, 2, …, 8}, i≠j condition
for diagonals.
As it is well known CSPs are commutative [12,

16]. This means that the order of any given set of
actions has no effect on the outcome. As the
consequence all CSP systematic search algorithms
can generate successors by considering assignments
for only a single variable at each node in the search
tree.

There are two basic approaches how to solve
problems defined by means of constraints:
backtracking based search that extends a partial
solution to a complete solution and local search that
decreases the number of violations in a complete
solution. These two approaches and their
corresponding heuristics are implemented and
discussed in the paper.

4 Backtracking approach: General-
purpose heuristics for solving CSPs
efficiently
The classic approach to solve CSPs is to use a
backtracking search algorithm [5, 11, 12, 16]. This
is a depth-first search that picks one variable at a
time and chooses a value for this variable. The
choice for a variable or value is called a choice
point and the assignment of a value to a variable is
called labeling [11].

Plain backtracking is an uninformed algorithm,
so it is not very effective for large problems [12].
Informed search algorithms, such as A*, have better
performance due to exploitation of domain-specific
heuristics derived from the knowledge of the
problem. But it turns out that CSPs can be
efficiently solved without such domain-specific
knowledge. Instead, there are general-purpose
heuristics that do with the choice points and answer
the following questions:

1. Which variable should be labeled next, and
in what order should its values be tried?

2. What are the implications of the current
variable assignments for the other
unassigned variables?

3. Can we detect inevitable failure early?
One important technique is the propagation of

the consequences of an assignment on the other
variables through the constraints (lookahead
strategies [5, 11]). Forward Checking (FC) is the
improved backtracking by lookahead technique.
Another method of enhancing the search is by using
heuristics that involve the variable and value
order. Instead of doing this at random the
sequences of variables and their instantiations can

WSEAS TRANSACTIONS on COMPUTERS Emilia Golemanova

E-ISSN: 2224-2872 175 Issue 4, Volume 12, April 2013

be ordered. This can either be done globally (static
ordering) before the search starts or locally
(dynamic ordering) at every node [13-17]. The
popular variable ordering heuristics - Minimum
Remaining Values (MRV) and degree [12, 16],
and a value ordering heuristic - Least-
Constraining-Value (LCV) [12, 16] are the subject
of the following CNP implementations.

4.1 CNP implementation of the general-
purpose heuristics
We start with a discussion of a CNP implementation
of the FC algorithm with MRV, degree and LCV
heuristics on the example of the 8-queens problem
(see Fig.1). Based on this solution we can easily
simulate other strategies (simple and stochastic
variant of FC) which will be described in Section 6.
Figure 1 and all other figures depicting CNP
implementations are generated from the WinSpider
IDE.

main MainNet;

Sub QueenAtRowH;

Fig.1 CNP implementation of the general-purpose
heuristics for 8-queens problem

The control network consists of two subnetworks

- main (MainNet) and subnet QueenAtRowH.
MainNet invokes QueenAtRowH (CALL
QueenAtRowH) and prints the found solution
(primitive PrintSolution). The main job is
accomplished by the recursive subnet
QueenAtRowH. A recursive level corresponds to a
search tree level (picks one variable and chooses a
value for this variable). The two choice points

(variable and value choices) are modeled by system
control states of type RANGE (Rows, Cols).

4.2 Variable ordering
The definition of 8-queens problem as a CSP in
Section 3 makes it quite clear that the variable
choice corresponds to a choice of a row.

4.2.1 MRV heuristic
One of the most popular dynamic heuristic that
decides how to choose the next variable is MRV,
which comes from the fail-first principle. The MRV
heuristic selects from the set of unassigned variables
the variable with the fewest remaining values in its
domain [16]. That’s why it also has been called the
“most constrained variable” heuristic [12]. It allows
discovering a dead end sooner and thereby prunes
the search tree.

This idea can be simulated in CNP using the
control state Rows and primitive MRV. Primitive
MRV calculates the heuristic evaluations Ri, i∈{1,
2, …, 8} of all the 8 variables, i.e. the number of
legal positions on the rows. They are used as
evaluations of the outgoing arrows from Rows.
State Rows is a RANGE type control state with low
selector 1 and high selector 8, determining which
emanating arrows will be attempted - only those
whose evaluations are in the range [1; 8]. Already
assigned variables will have zero remaining values
in its domain, because there are no permitted
positions on the rows with already placed queens.
Therefore their corresponding arrows will be cut off.
System option [RANGEORDER=LOWFIRST]
states that the “survived” emanating arrows will be
attempted in ascending order of their evaluations
which means that the row with minimum remaining
legal positions is chosen first. The other system
option [NUMBEROFARROWS=1] is used because,
as it was mentioned in Section 3, CSPs are
commutative, i.e. it’s only needed to consider
assignments to a single variable at each step [12].
Primitive SetRow(Row, Number) assigns the
parameter Number to the subnetwork variable
Row.

4.2.2 Degree heuristic
Another heuristic is to choose the variable that is
involved in the largest number of constraints,
causing the largest reduction in the domains of the
remaining variables [12, 16]. It attempts to reduce
the branching factor on future choices. This is called
the degree heuristic. The MRV heuristic is usually

WSEAS TRANSACTIONS on COMPUTERS Emilia Golemanova

E-ISSN: 2224-2872 176 Issue 4, Volume 12, April 2013

a more powerful guide, but the degree heuristic can
be useful as a tie-breaker [12, 16, 17].

The MRV heuristic for the 8-queens problem
doesn’t help at all in choosing the first row, because
initially every row has 8 legal columns [12]. In this
case, a static version of the degree heuristic comes
in handy. It would lead to an ordering from the
middle rows outward, since a queen in the middle
row restricts the search more than one on the top or
bottom of the board [13, 14, 18]. This can be done
globally before the search, ordering rows from
“inside out”. In the CNP implementation this idea is
realized setting the order of definition of outgoing
arrows from state Rows as follows: 4, 5, 3, 6, 2, 7,
1, 8. Therefore, when the control is in the control
state Rows the row with the smallest number of
unthreatened squares is chosen due to the system
option [RANGEORDER=LOWFIRST], but in case
of more than one row have equal results, the row
closer to the middle of the board is preferred.

The result of incorporating these two heuristics
(MRV and degree) is definitely positive for n-
queens problem and according to Cheadle [14] for
example, for the 16-queens instance, the number of
backtracks goes down to zero, and more difficult
instances become solvable.

4.3 Lookahead technique
Analyzing the situation after placing a queen on the
board, it’s possible to detect the failure early, i.e.
some values can be rejected at earlier stages [5, 11].
FC algorithm improves chronological backtracking
by incorporating such a lookahead strategy. When
the variable is labeled to a value L it checks the
remaining domains of unassigned variables. If there
is a domain reduced to an empty set, then L will be
rejected.

The MRV primitive implements this idea
detecting the rows still without a queen, but with all
beaten squares. In this case the primitive is
unsuccessfully executed and backtrack is forced.
This causes a new value choice which is
accomplished in the previous recursive level of the
subnetwork QueenAtRowH.

4.4 Value ordering (LCV)
Once a variable has been selected, the algorithm
must decide on the order in which to examine its
values [12]. The way in which we choose values is
important in case of looking for just one solution
(other way all the values must be tried). The most
popular heuristic for choosing a value is LCV. The
idea is to choose the value that would eliminate the

fewest values in the domains of other variables and
thus leaving the most choices open for subsequent
assignments to unassigned variables. Again it can be
realized globally (static version) or locally (dynamic
version).

The dynamic ordering is implemented by the
primitive LCV and the control state Cols, which is
of the type RANGE again. Primitive Cols calculates
the heuristic evaluations Ci, i∈{1, 2, …, 8} of all
values of the already chosen variable, i.e. the
heuristic evaluations of the positions (columns) in
the chosen row. The attacked positions have the
evaluation 0. The heuristic evaluation of an
unattacked position is the number of attacked
squares on the board after placing the queen on that
square. The minimum number of attacked squares
positions is 22 and the maximum - 64. These are the
selectors of the control state Cols, therefore the
illegal variable values (those with heuristic value 0)
are rejected for examination. Option
[RANGEORDER=LOWFIRST] must be used for
that control state, too – as a result, the column
causing the minimum attacks will be attempted first.
Placing a queen on the board is performed by the
primitive Place(Row, Col) on the attempted arrow.

In case of equal heuristic evaluations the static
version of LCV heuristic is used as tie-breaker. The
outer columns are preferred because they defeat the
board less than the inside ones. Consequently the
default order of the outgoing arrows from Cols is 1,
8, 2, 7, 3, 6, 4, 5.

The combination of FC algorithm, general
purpose heuristics - MRV and LCV and problem-
dependant heuristics as tie-breakers is turn out to be
very effective approach. In [18] Wallac claims that
70-queens problem is solved within a second, and
the algorithm scales up easily to 200 queens. The
presented above CNP implementation finds the first
solution of 8-queens problem in 8 steps which
corroborates the result of Kalé in [22] that these
heuristics appear to be almost perfect in the sense
that they finds a first solution without any
backtracks in most cases of n-queens problem for n
from 4 to 1000.

5 Local Search approach: Constraint-
Based Local Search
Local Search (LS) algorithms turn out to be very
effective in solving many CSPs [12]. For example,
they solve even the million-queens problem in an
average of 50 steps. Local search also works well
for real problems. It has been used to solve
scheduling problems (observations for the Hubble

WSEAS TRANSACTIONS on COMPUTERS Emilia Golemanova

E-ISSN: 2224-2872 177 Issue 4, Volume 12, April 2013

Space Telescope) even when these problems are
dynamically changeable (airline schedules).

Local search takes a fundamentally different
approach to solving CSPs than the systematic tree
search of constraint programming (i.e. backtracking
approach), whose main ideas were described above.
In essence it uses a complete-state problem
formulation and explores a graph, moving from
solution to neighboring solution in the hope of
improving it. Local search is, in contrast to
constraint programming, not complete. There is no
guarantee that an optimal solution will be found.

Constraint-Based Local Search (CBLS) uses
constraints to describe and control local search.
Although the constraints are the same as in
constraint programming, the way in which they are
used is not. They are not used to prune the search
space, but to maintain a number of properties which
can be used to guide the local search.

Fig. 2 The MIN-CONFLICTS algorithm for solving

CSPs by local search from [12]

The presented at Fig. 3 CNP implementation
uses a slightly modified variant of the search
procedure from Fig.2 as it is defined in [12]. It
iterates max_steps number of times (failure) or
until all constraints are satisfied (success). Checks
for these two situations in the CNP implementation
are performed by the primitives GetToMaxIter and
NoSol. The initial state of local search assigns a
value (randomly or greedy generated) to every
variable. As it has been mentioned, the main
operation is moving from one solution to a
neighboring solution. Typically a move in CBLS
consists of a simple reassignment of a value to a
variable, but other moves are possible, such as
multiple reassignments, swapping the value of two
or more variables [12]. For example, in the 8-queens
problem, the initial state might be a random
configuration of 8 queens in 8 rows, and the
successor function picks one queen and considers
moving it elsewhere in its row. Another possibility
would be start with the 8 queens, one per row in a
permutation of the 8 columns, and to generate a
successor by having two queens swap columns. In

the presented CNP solution the first approach is
adopted.

main MainNet;

Sub QueenAtRowLS;

Fig. 3 CNP implementation of CBLS for 8-queens

problem

At each iteration the queen for rearrangement
must be chosen. Unlike the algorithm from Fig. 2
where the queen is randomly chosen from all the
attacked queens, the CNP implementation (see Fig.
3) selects the queen which contributes to the most
violations [19]. This is determined using the control
state Rows of type SELECT with selector 7
(maximum number of conflicts which a queen is
involved in) and the system option
[PROXIMITY=NEAREST]. The control state uses
as arrow evaluations (Q1, …, Q8) the number of
violations that queens are involved in, calculated by
the primitive QueenConflicts.

When a variable (queen) is selected, the
algorithm selects a new value (column) for this
variable. In choosing it, the most obvious and
popular heuristic is to select the value that results in
the minimum number of conflicts with other
variables - the min-conflicts heuristic [12]. The
primitive ColConflicts(Row, C1, C2, C3, C4, C5,
C6, C7, C8) evaluates the effect of the placement of
the selected queen (at Row) on the 8 columns. The
control state Cols of type SELECT with selector 0
and the system option [PROXIMITY=NEAREST]
causes the column with minimum number of
conflicts to be chosen. As a tie-breaker in both
control states the random choice is used. When both
a queen and a value have been selected, the

WSEAS TRANSACTIONS on COMPUTERS Emilia Golemanova

E-ISSN: 2224-2872 178 Issue 4, Volume 12, April 2013

primitive Place performs the assignment and
thereby executes the actual move.

Figure 4 reports the experimental results for the
CBLS model with SPIDER. It compares the
performance of this algorithm according to the
maximum allowed iterations (max_steps). The
algorithm was run 1000 times (because of
randomness) for a bound of 20 iterations, 50
iterations and 100 iterations. At max_steps=20 it
found a solution on 37% of the runs in an average of
10 steps. Using max_steps=100 raises success to
75% in an average of 30 steps. But amazingly more
than half of the successful runs required fewer than
20 iterations to find the solution and this is true for
all the cases of the parameter max_steps. This
means, firstly, that the frequency of occurrence of a
solution with a small number of iterations is bigger.
And secondly, the distribution of the successful runs
over to the number of iterations required to obtain
the solution is roughly independent of the bound of
number of iterations. Another interesting
characteristic of the graph of Fig. 4 are the spikes
near the 6 iteration mark, i.e. CBLS delivers
maximum number of successful runs in 5-8
improvements.

0

10

20

30

40

50

60

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

iterations

su
cc

es
sf

ul
 ru

ns

max_steps=20
max_steps=50
max_steps=100

Fig. 4 Distribution of the successful runs over to
number of required iterations

6 Other CNP implementations for
solving CSPs
Using the CNP implementations presented in Fig. 1
and Fig. 3 and another type of dynamic control
(system options and control states) we can easily
model other CSP solving algorithms. Table 1
presents their performance on the 8-queens problem
and the performance of the already discussed in the
previous sections two algorithms (columns 2 and 5).

Table 1

1 2 3 4 5 6

FC FCs&d FCs FCrnd CBLSmc CBLSrnd
88 8 8 (25) (10) (13)

The algorithms from left to right, are simple
forward checking algorithm (FC), forward checking
with static and dynamic variable and value ordering
heuristics (FCs&d), forward checking with only
static variable and value ordering heuristics (FCs),
forward checking with random variable and value
ordering (FCrnd), CBLS with most conflicted
variable chosen (CBLSmc) and CBLS with
randomly chosen conflicted variable (CBLSrnd).
Each cell is the number of consistency checks
required to solve the problem. For the algorithms
with elements of randomness (the last three in the
table) this is the mean number of checks (marked in
parentheses) over 1000 runs with a bound of the
number of iterations 20.

6.1 Forward Checking algorithm with only
static variable and value ordering heuristics
(degree and static LCV; Table 1, column 3)
Static versions of the discussed heuristics require
variable and value pre-ordering (before the search).
With our model from Fig.1, that can only be
achieved by deleting the rearranging arrows option
RANGEORDER. This way the default order of the
outgoing arrows from Rows and Cols states is only
meaningful which lead to ordering rows from
“inside out” and columns from “outside-in”. The
segment of the modified CN that corresponds to
Rows and Cols is shown in the Fig.5. The
experiments show that this implementation finds the
solution in 8 steps, i.e. without any backtracks. This
result proves the thesis that a dynamic ordering is
not necessarily better than a static ordering [13]. In
8-queens problem the static heuristics work a lot
better than the dynamic ones because the dynamic
heuristics return the same values in most cases.

Fig. 5 CNP implementation of FCs for 8-queens
problem

6.2 Forward Checking algorithm with
random variable and value ordering (Table
1, column 4)

WSEAS TRANSACTIONS on COMPUTERS Emilia Golemanova

E-ISSN: 2224-2872 179 Issue 4, Volume 12, April 2013

Sometimes it is useful to randomize the variable and
value selection procedure [17, 19]. The importance
of introducing randomness generally in computation
theory is discussed in [20]. The CNP
implementation of stochastic variable and value
choice could be easily achieved if we modify the
CN from Fig.1 replacing the option
[RANGEORDER=LOWFIRST] with
[RANGEORDER=RANDOM] for both Rows and
Cols control states (see Fig.6). Generated heuristic
evaluations won’t be used in ordering rows and
columns and the outgoing arrows from the
corresponding control states will be attempted in
random order. The performance of this algorithm is
worse than the performance of the previous ones. It
finds the solution in an average of 25 steps.

Fig. 6 CNP implementation of FCrnd for 8-queens

problem

6.3 Forward Checking algorithm (Table 1,
column 1)
A simple backtracking strategy for solving the 8-
queens problem can be performed in the following
way. Rows and columns are looked at one at a time
in numerical order. This algorithm with
incorporated lookahead technique (forward
checking algorithm) could be simulated in CNP
using CN from Fig.1 and deleting the rearranging
arrows option RANGEORDER. The outgoing
arrows from the control states Rows and Cols must
be set in numerical order, i.e. from 1 to 8. The
modified Rows and Cols are shown in the Fig.7.
This algorithm finds the first solution in 88 steps.

Fig. 7 CNP implementation of FC for 8-queens
problem

6.4 CBLS algorithm with randomization
(Table 1, column 6)
The algorithm of Fig. 2 where the variable is
randomly chosen from all the conflicted variables
could be implemented in SPIDER easily using the
CNP implementation from Fig.3 which simulates a
LS algorithm with most conflicted variable chosen.
The only change that must be performed concerns
the control state Rows of type SELECT. Now it
should be stated of type RANGE with low selector 1
and high selector 7, determining minimum and
maximum number of conflicts which a queen is
involved in. This way the unattacked queens (those
with value 0) are rejected for examination. Random
choice from the conflicted queens is performed by
the system option [RANGEORDER=RANDOM].
As the search process in LS is determined another
system option must be used -
[NUMBEROFARROWS=1]. These changes are
depicted on Fig.8.

Fig. 8 CNP implementation of CBLSrnd for 8-
queens problem

0

5

10

15

20

25

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

iterations

su
cc

es
sf

ul
 ru

ns

max_steps=20
max_steps=50
max_steps=100

Fig. 9 Distribution of the successful runs over to
number of required iterations for the CBLS model

with random chosen conflicted variable

The same experiment like that for the previous
CBLS model (Section 5) was performed - the
algorithm was run 1000 times with a bound of the
number of iterations 20, 50 and 100. At

WSEAS TRANSACTIONS on COMPUTERS Emilia Golemanova

E-ISSN: 2224-2872 180 Issue 4, Volume 12, April 2013

max_steps=20 the successful runs are 19% (in an
average of 10 steps), at max_steps=50 they are
44%, and at max_steps=100 - 59%. Again, the
frequency of occurrence of the successful runs
decreases with the increment of the number of
required iterations (see the Fig.9). But the successful
runs for the algorithm discussed are more evenly
distributed as it could be seen at Fig.10 which
compares the performance of the two algorithms for
max_steps=20.

0

5

10

15

20

25

30

35

40

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

iterations

su
cc

es
sf

ul
 ru

ns

LS random
LS most conflicted

Fig. 10 Comparison of the distributions of the
successful runs for the presented CBLS models

6.5 Number of solutions
SPIDER system option - SOLUTIONS is used for
setting the solution scope. The value of the option
determines the number of solutions that are looked
for. The presented FC implementations find just the
first one solution to the 8-queens problem, setting
the [SOLUTIONS=1]. If we are trying to find all the
92 solutions the [SOLUTIONS=ALL] must be
specified. This will cause a full traversing of the
control network.

7 CNP (SPIDER language) and
Constraint Programming Languages
CNP and constraint programming are fundamentally
different but at the same time they have interesting
similarities. This section explores (not in depth) the
differences and comparing the features the two
approaches offer.

1) Constraint satisfaction programming
languages are used to encode and solve only
constraint satisfaction/optimization problems.

On the other side CNP is a universal
programming paradigm and this was illustrated in
[9] through solutions to selected representative
applications, but it is a style of high-level

programming created to be especially convenient for
solving problems with natural graph-like
representation.

2) The computational model of constraint-
programming languages and platforms typically
employs the various constraint propagation
techniques and handles the backtracking, while the
choice for variables and values is left to a user
specified search procedure.

SPIDER search engine is based on backtracking
too, but it provides a lot of static and dynamic tools
to control the search and this way to incorporate
various heuristics. As it was shown the choice for
variables and values in solving CSPs are easily
implemented by the wide set of system options and
control states.

3) Constraint programming is a form of
declarative programming, because constraints don’t
specify a step or sequence of steps to execute, but
rather the properties of a solution to be found.

CNP is a declarative style of programming too,
because the problem is specified in the form of
graph and there is a built-in inference, searching a
path (solution of a problem) in the graph.

4) Constraint programming is an embedding of
constraints in a host language. It has been
established that constraints can be mixed with the
following programming paradigms: logic
programming, functional programming and
imperative programming. Constraints are usually
integrated into a programming language or provided
via separate software libraries. The first approach is
implemented in program systems (Prolog III,
ECLiPSe, Oz, Kaleidoscope, Comet) which
unfortunately aren’t in the top 50 of the most usable
tools for software development, according to The
TIOBE Programming Community Index [23] for
example. They have insufficiently good
maintenance and outdated versions. The second
approach (libraries) supposes limited functionality
and difficult communication between both
paradigms.

Technically, the SPIDER program is integrated
in the imperative programming language project
even at the level of source code. Hereby, a two-way
connection between paradigms and an access to all
common recourses are achieved.

5) In many cases, the innate structure of a
problem to handle is not linear. For example, the
primary, natural description of a problem might take
the form of a tree, a graph (network), or a recursive
set of networks. It would be a great advantage if
there was no need for the ‘programmer' to try to
translate an inherently graph-like, possibly
nondeterministic, possibly declarative description

WSEAS TRANSACTIONS on COMPUTERS Emilia Golemanova

E-ISSN: 2224-2872 181 Issue 4, Volume 12, April 2013

into a much more complicated and difficult to
understand sequential algorithmic model of this
description. In fact, because of its naturalness, the
human form will be most probably the most
consistent and easily verifiable representation. This
imposes the requirement that a programming
language to be natural, i.e. similar to the manner in
which people think of problems and the style in
which they specify them informally. As a matter of
fact, CNP has been created with exactly that goal in
mind. Furthermore, being a declarative description
of the problem, the CN is a graphical specification
of that declarative representation, which is more
natural and intuitive than the declarative
representation implemented by instructions.

In solving CSPs, the natural description of choice
points is graphical, specifying a limited number of
alternatives, but the program must later choose
between them. According to this a shortcoming of
specifications in constraint programming languages
like COMET is that they are less natural than those
in CNP. To observe this, compare the equivalent
specifications of the 8-queens problem in the two
languages. Figure 11 shows part of that COMET
specification, which is equivalent to the choice
points of variables and its values. While these
choice points are specified in CNP graphically
through control states with outgoing arrows, in
COMET they are implemented as instructions
(forall and tryall)

forall(i in Size) by (queen[i].getSize())
tryall<m>(v in Size : queen[i].memberOf(v))
label(queen[i], v);

Fig. 11 The search procedure of n-Queens problem

in COMET

8 Conclusion
As a new programming paradigm, CNP builds on
fundamental research in programming paradigms [7,
10]. It integrates ideas from imperative
programming, declarative programming, rule-based
systems, nondeterministic programming and
graphical programming.

The most prominent usage of the tools for
dynamic search control in CNP is for automatic,
declarative implementation of various heuristics in
search algorithms. A wider view at the approaches
to implementing various search strategies in CNP is
the subject of [21]. The questions of what search
techniques for solving CSPs are well suited for such
an elegant declarative CNP implementation and how

to specify (to program) such a strategy have been
targeted in this paper.

The resulting programs are intuitive and natural
and can be used as an illustration of the main
concepts and techniques in solving CSPs. Another
important benefit of the proposed approach is its
flexibility. It is easy to modify an existing
implementation, thus to experiment with different
heuristics obtaining a wide variety of search
algorithms without affecting the problem modeling.

References:
[1] Kratchanov, K., Golemanov, T., Golemanova,

E. and Ercan, T.: Control Network
Programming with SPIDER: Dynamic Search
Control, In: 14th Int. Conf. on Knowledge-
Based and Intelligent Information &
Engineering Systems (KES 2010), Cardiff, UK
(2010)

[2] Golemanova, E., Golemanov, T., Kratchanov,
K.: “Built-in Features of the SPIDER Language
for Implementing Heuristic Algorithms”, In:
Proc. CompSysTech 2000, Sofia, June 2000,
II.9-1 – II.9-5 (in Bulgarian). Also published by
ACM Press, 2091-2095.

[3] Kratchanov, K., Golemanova, E., Golemanov,
T. and Ercan, T., “Nonprocedural
Implementation of Local Heuristic Search in
Control Network Programming”, In: 14th Int.
Conf. on Knowledge-Based and Intelligent
Information & Engineering Systems (KES
2010), Cardiff, UK, 2010.

[4] Kratchanov, K., Golemanova, E., Golemanov,
T. and Ercan, T.: Procedural and Non-
Procedural Implementation of Search Strategies
in Control Network Programming. In: Intl
Symposium on Innovations in Intelligent
Systems and Applications (INISTA 2010),
Kayseri & Cappadocia, Turkey (2010)

[5] Tsang, E.: A Glimpse of Constraint
Satisfaction. Artificial Intelligence Review,
Kluwer Academic Publishers, Printed in the
Netherland, 13: 215–227, 1999

[6] Bell, J., Stevens, B.: A survey of known results
and research areas for n-queens. Discrete
Mathematics, Volume 309, Issue 1, 2009, pp 1-
31

[7] Kratchanov, K., Golemanov, T., Golemanova,
E.: Control Network Programming, In: Proc.
6th IEEE/ACIS Conf. on Computer and
Information Science (ICIS 2007), July 2007,
Melbourne, Australia, 1012-1018.

[8] Control Network Programming web site:
http://controlnetworkprogramming.com

WSEAS TRANSACTIONS on COMPUTERS Emilia Golemanova

E-ISSN: 2224-2872 182 Issue 4, Volume 12, April 2013

http://controlnetworkprogramming.com/

[9] Kratchanov, K., Golemanova, E., Golemanov,
T.: Control Network Programming Illustrated:
Solving Problems With Inherent Graph-Like
Structure, In: Proc. 7th IEEE/ACIS Conf. on
Computer and Information Science (ICIS
2008), May 2008, Portland, OR, USA, 453-
459.

[10] Kratchanov, K., Golemanova, E., Golemanov,
T.: Control Network Programs and Their
Execution, In: 8th WSEAS Int. Conf. on
Artificial Intelligence, Knowledge Engineering
and Data Bases (AIKED 2009), Cambridge,
UK, pp. 417–422. WSEAS Press, 2009.

[11] Tsang, E.: Foundations of Constraint
Satisfaction. Academic Press, 1996

[12] Russell, S, and Norvig, P.: Artificial
Intelligence: A Modern Approach, 3rd ed.
Prentice Hall, Upper Saddle River, NJ, 2010

[13] Run, P.: Domain Independent Heuristics in
Hybrid Algorithms for CSP’s. Masters thesis.
University of Waterloo, Ontario, Canada, 1994.

[14] Cheadle, A., et al.: ECLiPSe: A Tutorial
Introduction:
http://www.eclipseclp.org/doc/tutorial/tutorial0
88.html

[15] Simonis, H. ECLiPSe ELearning Website:
http://4c.ucc.ie/~hsimonis/ELearning/nqueen/sl
ides.pdf

[16] The Cork Constraint Computation Centre (4C).
CSP tutorial:
http://4c.ucc.ie/web/outreach/tutorial.html

[17] Rossi, F, Beek, P., Walsh, T.: Handbook of
Constraint Programming. Elsevier. 2006

[18] Wallac, M. Constraint Programming:
http://eclipseclp.org/reports/handbook/handboo
k.html

[19] Müller,T.: Interactive Heuristic Search
Algorithm, In Proceedings of the CP'02
Conference - Doctoral Programme, 2002

[20] Hromkovic, J.: Theoretical Computer Science:
Introduction to Automata, Computability,
Complexity, Algorithmics, Randomization,
Communication, and Cryptography, Springer,
Berlin (2004)

[21] Kratchanov, K., Golemanova, E, Golemanov,
T. and Gökçen, Y.: Implementing Search
Strategies in Winspider II: Declarative,
Procedural, and Hybrid Approaches. In:
Stanev, I. and K. Grigorova (eds.): Knowledge-
Based Automated Software Engineering,
Cambridge Scholars Publ., pp. 115-135 (2012)

[22] Kalé L.V.: An almost perfect heuristic for the n
nonattacking queens problem, Information
processing letters, vol. 34, no. 4, 1990, pp.
173-178

[23] TIOBE Programming Community Index
http://www.tiobe.com/index.php/content/paperi
nfo/tpci/index.html

WSEAS TRANSACTIONS on COMPUTERS Emilia Golemanova

E-ISSN: 2224-2872 183 Issue 4, Volume 12, April 2013

http://www.eclipseclp.org/doc/tutorial/tutorial088.html
http://www.eclipseclp.org/doc/tutorial/tutorial088.html
http://4c.ucc.ie/~hsimonis/ELearning/nqueen/slides.pdf
http://4c.ucc.ie/~hsimonis/ELearning/nqueen/slides.pdf
http://4c.ucc.ie/web/outreach/tutorial.html
http://eclipseclp.org/reports/handbook/handbook.html
http://eclipseclp.org/reports/handbook/handbook.html

